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• To what extent are brain mechanisms subserving object and scene recognition distinct?
• Functional imaging reveals reliable response selectivity for scenes in 3 cortical areas in parahippocampal, occipital, 

and medial parietal cortex (PPA, OPA, and RSC/MPA), and object-selectivity in lateral occipital cortex (LOC)
• Despite its ability to reveal large-scale organizational principles, mean selectivity cannot conclusively rule about 

single/distinct underlying mechanisms, and is uninformative about the details of representation
• Representational Similarity Analysis4 provides detailed information about representations but typically requires a 

common set of stimuli across regions/models. 
• To explore the nature of mechanism/s underlying object and scene representations in these regions and throughout 

cortex, we develop an approach using cross-validated voxel encoding models
• By training a voxel encoding model on one set of stimuli (e.g. objects in ImageNet), we cross-validate that model 

with prediction on a different stimulus set (e.g. scene images from SUN categories) 
• Cross-database generalization serves as a metric of representational similarity/mechanistic overlap of distinct 

stimuli

• Univariate mean response differences in high level vis. cortex supported an 
objects -> scenes continuum across BOLD5000 stimulus sets (Figs 3,4,5)

• Positive R2 prediction in voxels with large univariate difference (Figs 1/4, 6) 
suggests that some of the univariate difference is due to graded variation along 
common representational dimensions/features

• Greater precedence of large r2 prediction vs. R2 prediction (Fig 6) in voxels 
with univariate differences may indicate a nonlinear scaling of similar features, 
e.g. a disproportionately large mean response to scenes in RSC/OPA/PPA

• Comparison of univariate and encoding model results suggests both overlap and 
divergence in representational mechanisms for objects and scenes in high level 
visual cortex

• Our method could also be applied as a special case of mixed RSA5 in which the 
mixing is computed for multiple stimulus sets to compute RDMs for a common 
test set, which are correlated to test representational similarity
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• Use BOLD5000: ~5000 images during fMRI for 3 subjects
• Voxel activity was extracted using single-trial GLMs with 

FMRIPREP2 nuisance regressors
• We fit voxel-wise L2-regularized (ridge) regression models 

using one of three datasets (ImageNet, COCO, Scenes). 
• Features from an ImageNet-pretrained deep convolutional 

neural network (VGG-11) were used as predictors of voxel 
activity, subject to SVD prior to model fitting. 

• An efficient leave-one-sample-out approach was used to select 
the optimal regularization strength on a per-voxel basis, using 
80% of the given database to train/validate the model. 

• R2 and r2 were used to assess model prediction (scale/shift-free 
and scaled/shifted)
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Figure 3. Breakdown of stimuli in BOLD5000 
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Univariate results
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Encoding model results

Figure 1. Whole-brain cross-database R2 prediction for the penultimate layer of vgg11 in 2 example subjects

Comparing univariate and encoding model results

Figure 4. Univariate cross-database t-test significance maps for BOLD5000 in 2 example subjects

Figure 2. Encoding model generalization results in functionally-defined regions of interest, R2 (left) and r2 (right)

Figure 6. Subset of scatter plots of univariate t-stat vs. encoding model prediction across all voxels 
exceeding (R2 or r2> 0.05) for same-dataset generalization.

Figure 5. Mean voxel univariate t-test contrasts between datasets using 3 full subjects in BOLD5000
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