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Introduction & Motivation Differentiable physics Parameter learning Visual prediction
= Simulation-based models have strong physical = Optimality conditions for LCP can be written = A ball of known mass hits chain. Object positions = After observing 3 frames of a billiard ball-like
knowledge and learn efficiently, but are inflexible; compactly are observed. Task is inferring the chain mass scene, predict positions 10 frames into the future
learned models are flexible, but require extensive Mz + ATy +GT24q=0 | | ]
(re)training and predictive precision decays fast Ar = 0 \ I 7] E:> e )
* We develop a differentiable physics engine, which has Gr+ Fz+s=m : | X@ . .
both precise knowledge of physics and can be s>0, 2>0, sT2>0. » Autoencoder architecture. Encoder maps frames
embedded in an end-to-end learning system where: &= v = Moy dif a » Simulations are iteratively unrolled starting with an into physical predictions. Engine steps physics into
—] Convotution bl Noniinearity || Gonvolution | Noninearity —> =t A= jej O B :2 o l 00 0 ] arbitrary mass. Estimated chain mass is minimized the future. Decoder draws image from physics state
z = { )\; G = %; 8 ] _— 8 ] po—ET 0 using gradlent of MSE between the simulated and m Training IS performed with Only par“a”y labeled
- . o o
L . - . . true positions Eotmaton Eror data. For unlabeled examples, prediction uses the
= Using matrix differential calculus, we now take the Estimated Chain Mass : . .
. — Shveios — . . B estimated parameters (notice the hats):
—>| Convolution PP| Nonlinearity P> simlsj,lation > Nonlinearity —> d]fferentlals ()f ’[he System ab()ve N n N . n A N
3 . ¢: = encoder(x), Gt+dr = physics(dy), i = decoder(pi4at)
- . - - dMz + Mdzx + dATy + ATdy +dGT 2z + GTdz +dg =0 25 y 10 : ..
= Previous similar Work have elther Used numerlcal %4 s n When Iabels are avallable, predlctlon uses the true
d?fferent?ation methods or re!ieq solely on auto- i T o O (j;zx T ?dx = 8 £ labels (notice the lack of hats):
dlffe!'entlatlon: We propose finding thg analytlg @0 (G + e m) + zo (dGr + Gdzr + dFz + Fdz —dm) = ) | 104 by = encoder(x),  brrar = physics(dy), 9 = decoder(¢iyar)
gradients by differentiating the dynamics equations or in matrix form: | el G0 25 s0 75 100 125 180 175 200 .
. . " o P et s e e S Lk | se = ]ossis composed of three terms when labels are
" This system contributes to a recent trend of DENG DGt + For—m)+ F 0 [ - ] _ ! D ydCr D AF 1 D(~%)dm ] step e e coneremeten e qvailable, or only the decoder loss when unlabeled
incorporating components with structured modules A 0 0 | Ldy —dAx* = The engine’s analytical 1000 — Numerica Y
. . . — kenc hys dec;
into end-to-end learning systems such as deep networks. = This system is linear in the unknowns (dx, dy, dz), gradients are more 5 ™ Cone = U b0). Lonns = (0 ’ y¢ ) Lase = €(4,7)
Dvnamics LCP simple to solve for desired differentials efficient than numerical £ * ene = PNOO O Ephys = HOUHdn Gudt)y dee =
Y 3y defin oradients (finite 2 o » Physics structure embedded into the model allows
. . . . inin : :
= Rigid body dynamics can be framed as a linear ;/ (_:e %\4 - 1T T differences) as number of for learning with few labeled samples
complementarity problem (LCP) [ d. | = | D(:G D(Gr*+Fz* —m)+F 0 } { (ﬁ) } parameters increase T R T S B R R it '
. . . dy A 0 0 0 Frame
= Newtonian dynamics represented in terms of . . Control
velocity, using a discrete time step we can derive the gradients . . S . - True Future
. () (c) 5 .y . = Since the physics engine is differentiable, we use it in Frame .| .
Mo =19+ f > M(vgpa —v) =dify” +dify 9~ U o = 5 ldet +ady) conjunction with iLQR for control in the Cartpole I P P RS Y E I B
" Constraints are added to enforce rigid body % _ by, O DY 1 2dT) and the Atari Breakout tasks o Frame , o e b
dynam|CS . . om oG Cartpole Prediction Error | oo p Decoder MSE
J. 2. =0 Equality constraints o _ v yd’ ot _ _D(:*)dAT R " Physice Engine
(Ae, Jov + ¢) € ¢ Contact constraints oA ! ’ OF ) o 0o -
(g, Tyo+ B) € C} Friction constraints * Importantly, since we have already solved the : P — s Engne | — 100% abel
T . 10-4-E 400 - " 25:% labels
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where C(a,b) ={a > 0,b > 0,a"b = 0} backward pass with just one additional solve | w""rw-' AR \

—— MLP Baseline

" Equality constraints define joints, contact based upon the LU-factorization of the LCP B T e T 107
. . . . Breakout Reward 1
constraints prevent penetrations and friction matrix " Parameters are learned from - I R R
. . . e I " I 400- ouble 10 10° 106
constraints define frictional forces S'm.U|at'O”5 with random # Labelled Samples
policy. Performance is tested _=

External resources

» Code available at:

" Contact and friction constraints are inequalities and | yye oy effectively differentiate through the as parameters are learned.  Sxo

. f]w _ o
also have a complementarity term (a”b = 0), which & 1o ti6n at no additional cost to just running High reward is achieved

characterizes the LCP formulation . .. .
the simulation itself before learning a perfect model . , ,
= Solvable via primal-dual interior point method N https://github.com/locuslab/lcp-physics




